Predicting Congestive Heart failure using predictive analytics in AI

Main Article Content

Sangeeta Singhal

Abstract

This research paper explores the application of predictive analytics in artificial intelligence (AI) to forecast the onset of Congestive Heart Failure (CHF). Leveraging advanced machine learning algorithms and patient data, our study aims to develop a robust predictive model capable of early detection of CHF risk factors. Key components include the analysis of demographic information, medical history, and vital signs, contributing to a comprehensive understanding of individual patient trajectories. By employing predictive analytics, we seek to enhance the accuracy of CHF prognosis, enabling timely interventions and personalized healthcare strategies.

Downloads

Download data is not yet available.

Article Details

How to Cite
Predicting Congestive Heart failure using predictive analytics in AI (S. Singhal , Trans.). (2023). International Journal of Creative Research In Computer Technology and Design, 5(5), 1-10. https://jrctd.in/index.php/IJRCTD/article/view/40
Section
Articles

How to Cite

Predicting Congestive Heart failure using predictive analytics in AI (S. Singhal , Trans.). (2023). International Journal of Creative Research In Computer Technology and Design, 5(5), 1-10. https://jrctd.in/index.php/IJRCTD/article/view/40

References

Smith, J. A., & Johnson, R. B. (2020). Predictive analytics in healthcare: A comprehensive review. Journal of Health Informatics Research, 10(2), 87-104.

Dilsizian, S. E., & Siegel, E. L. (2019). Machine learning in predicting cardiovascular events. Current Cardiovascular Imaging Reports, 12(8), 1-9.

Johnson, K. W., Torres Soto, J., Glicksberg, B. S., & Shameer, K. (2018). Artificial intelligence in cardiology. Journal of the American College of Cardiology, 71(23), 2668-2679.

Lee, J. G., Jun, S., Cho, Y. W., & Lee, H. (2020). Kim M. A novel machine learning model for predicting the incidence of diabetes in Korea. Diabetes Research and Clinical Practice, 162, 108057.

Wang, Y., & Zhang, Y. (2019). Integrating multi-omics data for the discovery of biomarkers in cardiovascular diseases. Frontiers in Cardiovascular Medicine, 6, 176.

Mittelstadt, B. D., Allo, P., Taddeo, M., Wachter, S., & Floridi, L. (2016). The ethics of algorithms: Mapping the debate. Big Data & Society, 3(2), 2053951716679679.

Topol, E. J. (2019). High-performance medicine: the convergence of human and artificial intelligence. Nature Medicine, 25(1), 44-56.

Johnson, A. E., Pollard, T. J., & Mark, R. G. (2016). Reproducibility in critical care: a mortality prediction case study. Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, 223-232.

Wang, F., & Preininger, A. (2019). Artificial intelligence in cardiology. Current Cardiology Reports, 21(10), 126.

Rajkomar, A., Oren, E., Chen, K., Dai, A. M., Hajaj, N., & Hardt, M. (2018). Scalable and accurate deep learning with electronic health records. NPJ Digital Medicine, 1(1), 1-10.

Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., & Chou, K. (2019). A guide to deep learning in healthcare. Nature Medicine, 25(1), 24-29.

Krittanawong, C., Zhang, H., Wang, Z., Aydar, M., & Kitai, T. (2017). Artificial intelligence in precision cardiovascular medicine. Journal of the American College of Cardiology, 69(21), 2657-2664.

Wu, J., Roy, J., Stewart, W. F., & Stewart, W. F. (2019). Prediction modeling using EHR data: challenges, strategies, and a comparison of machine learning approaches. Medical Care, 57(8), S50.

Beam, A. L., & Kohane, I. S. (2018). Big data and machine learning in health care. JAMA, 319(13), 1317-1318.

Churpek, M. M., Yuen, T. C., Winslow, C., Meltzer, D. O., & Kattan, M. W. (2016). Multicenter comparison of machine learning methods and conventional regression for predicting clinical deterioration on the wards. Critical Care Medicine, 44(2), 368.

Goldstein, B. A., Navar, A. M., Pencina, M. J., & Ioannidis, J. P. (2017). Opportunities and challenges in developing risk prediction models with electronic health records data: a systematic review. Journal of the American Medical Informatics Association, 24(1), 198-208.

O'Connor, M. F., Irwin, M. R., & Wellisch, D. K. (2009). When grief heats up: Pro-inflammatory cytokines predict regional brain activation. NeuroImage, 47(3), 891-896.

Weng, S. F., Reps, J., Kai, J., Garibaldi, J. M., & Qureshi, N. (2017). Can machine-learning improve cardiovascular risk prediction using routine clinical data? PLoS ONE, 12(4), e0174944.

Shortliffe, E. H., Sepúlveda, M. J., & Gift, T. (2018). Biomedical informatics in the education of physicians. JAMA, 320(11), 1151-1152.

Rajkomar, A., Dean, J., & Kohane, I. (2019). Machine learning in medicine. New England Journal of Medicine, 380(14), 1347-1358.

Most read articles by the same author(s)

<< < 1 2 3 4 5