Zero-Shot Learning for Cross-Domain Image Classification Using Semantic Embeddings

Main Article Content

Dr. Robin Sharma

Abstract

Traditional image classification models rely heavily on large labeled datasets, limiting their applicability in domains with scarce data. This paper explores zero-shot learning (ZSL) techniques that enable models to classify images from unseen categories by leveraging semantic embeddings. A hybrid framework combining visual features from convolutional neural networks (CNNs) and semantic embeddings from word vectors is proposed. Experiments on benchmark datasets demonstrate that the approach achieves competitive performance in cross-domain classification tasks, paving the way for scalable and data-efficient AI solutions.

Downloads

Download data is not yet available.

Article Details

How to Cite
Zero-Shot Learning for Cross-Domain Image Classification Using Semantic Embeddings (D. R. Sharma , Trans.). (2024). International Journal of Creative Research In Computer Technology and Design, 6(6). https://jrctd.in/index.php/IJRCTD/article/view/76
Section
Articles

How to Cite

Zero-Shot Learning for Cross-Domain Image Classification Using Semantic Embeddings (D. R. Sharma , Trans.). (2024). International Journal of Creative Research In Computer Technology and Design, 6(6). https://jrctd.in/index.php/IJRCTD/article/view/76

References

Pavitha, U. S., Nikhila, S., & Krutthika, H. K. (2012). Design and implementation of image dithering engine on a spartan 3AN FPGA. International Journal of Future Computer and Communication, 1(4), 361.

Nikhila, S., Pavitha, U. S., & Krutthika, H. K. (2014). Face recognition using wavelet transforms. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 3(1), 6740-6746.

Krishnappa, K. H., & Gowda, N. V. N. (2023, August). Dictionary-Based PLS Approach to Pharmacokinetic Mapping in DCE-MRI Using Tofts Model. In International Conference on ICT for Sustainable Development (pp. 219-226). Singapore: Springer Nature Singapore.

Shashidhar, R., Balivada, D., Shalini, D. N., Krishnappa, K. H., & Roopa, M. (2023, November). Music Emotion Recognition using Convolutional Neural Networks for Regional Languages. In 2023 International Conference on Ambient Intelligence, Knowledge Informatics and Industrial Electronics (AIKIIE) (pp. 1-7). IEEE.

Nair, T. R., & Krutthika, H. K. (2010). An Architectural Approach for Decoding and Distributing Functions in FPUs in a Functional Processor System. arXiv preprint arXiv:1001.3781.

Shashidhar, R., Aprameya, C. V., Bharadwaj, R. R., Gontamar, S. M., & Krishnappa, K. H. (2023, November). Seismic Signal Processing and Aftershock Analysis using Machine Learning. In 2023 International Conference on Recent Advances in Science and Engineering Technology (ICRASET) (pp. 1-9). IEEE.

Krishnappa, K. H., Shashidhar, R., Shashank, M. P., & Roopa, M. (2023, November). Detecting Parkinson's Disease with Prediction: A Novel SVM Approach. In 2023 International Conference on Ambient Intelligence, Knowledge Informatics and Industrial Electronics (AIKIIE) (pp. 1-7). IEEE.

Shashidhar, R., Kadakol, P., Sreeniketh, D., Patil, P., Krishnappa, K. H., & Madhura, R. (2023, November). EEG Data Analysis for Stress Detection using K-Nearest Neighbor. In 2023 International Conference on Integrated Intelligence and Communication Systems (ICIICS) (pp. 1-7). IEEE.

Ajay, S., Satya Sai Krishna Mohan G, Rao, S. S., Shaunak, S. B., Krutthika, H. K., Ananda, Y. R., & Jose, J. (2018). Source Hotspot Management in a Mesh Network on Chip. In VDAT (pp. 619-630).

Harinandan, R., Kumar, M., Vamshi, P., Padma, C. R., Krishnappa, K. H., & Raghunandan, J. R. (2024, August). Design and Development of a Real-time Monitoring System for ACL Injury Prevention. In 2024 2nd International Conference on Networking, Embedded and Wireless Systems (ICNEWS) (pp. 1-6). IEEE.

Madhura, R., Krishnappa, K. H., Shashidhar, R., Shwetha, G., Yashaswini, K. P., & Sandya, G. R. (2023, December). UVM Methodology for ARINC 429 Transceiver in Loop Back Mode. In 2023 3rd International Conference on Mobile Networks and Wireless Communications (ICMNWC) (pp. 1-7). IEEE.

KRISHNAPPA, K. H., & Trivedi, S. K. (2023). Efficient and Accurate Estimation of Pharmacokinetic Maps from DCE-MRI using Extended Tofts Model in Frequency Domain.

Shashidhar, R., Aditya, V., Srihari, N., Subhash, M. H., & Krishnappa, K. H. (2023, November). Empowering Investors: Insights from Sentiment Analysis, FFT, and Regression in Indian Stock Markets. In 2023 International Conference on Ambient Intelligence, Knowledge Informatics and Industrial Electronics (AIKIIE) (pp. 01-06). IEEE.

Madhura, R., Krishnappa, K. H., Manasa, R., & Yashaswini, K. P. (2023, August). Slack Time Analysis for APB Timer Using Genus Synthesis Tool. In International Conference on ICT for Sustainable Development (pp. 207-217). Singapore: Springer Nature Singapore.

KRUTTHIKA, H. IMPLEMENTATION AND ANALYSIS OF CONGESTION PREVENTION AND FAULT TOLERANCE IN NETWORK ON CHIP.

Krutthika, H. K., & Aswatha, A. R. FPGA BASED DESIGN AND ARCHITECTURE OF NETWORK-ON-CHIP ROUTER FOR EFFICIENT DATA PROPAGATION.

Boddapati, V. N., Sarisa, M., Reddy, M. S., Sunkara, J. R., Rajaram, S. K., Bauskar, S. R., & Polimetla, K. (2022). Data migration in the cloud database: A review of vendor solutions and challenges. Available at SSRN 4977121.

Patra, G. K., Kuraku, C., Konkimalla, S., Boddapati, V. N., Sarisa, M., & Reddy, M. S. (2024). An Analysis and Prediction of Health Insurance Costs Using Machine Learning-Based Regressor Techniques. Journal of Data Analysis and Information Processing, 12(4), 581-596.

Gollangi, H. K., Bauskar, S. R., Madhavaram, C. R., Galla, E. P., Sunkara, J. R., & Reddy, M. S. (2020). Echoes in Pixels: The intersection of Image Processing and Sound detection through the lens of AI and Ml. International Journal of Development Research, 10(08), 39735-39743.

Reddy, M. S., Sarisa, M., Konkimalla, S., Bauskar, S. R., Gollangi, H. K., Galla, E. P., & Rajaram, S. K. (2021). Predicting tomorrow’s Ailments: How AI/ML Is Transforming Disease Forecasting. ESP Journal of Engineering & Technology Advancements, 1(2), 188-200.

Patra, G. K., Kuraku, C., Konkimalla, S., Boddapati, V. N., & Sarisa, M. (2023). Sentiment Analysis of Customer Product Review Based on Machine Learning Techniques in E-Commerce. Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-408. DOI: doi. org/10.47363/JAICC/2023 (2), 389(1), 7211-7224.

Rajaram, S. K., Konkimalla, S., Sarisa, M., Gollangi, H. K., Madhavaram, C. R., & Reddy, M. S. (2023). AI/ML-Powered Phishing Detection: Building an Impenetrable Email Security System. ISAR Journal of Science and Technology, 1(2), 10-19.

Gollangi, H. K., Bauskar, S. R., Madhavaram, C. R., Galla, E. P., Sunkara, J. R., & Reddy, M. S. (2020). Unveiling the Hidden Patterns: AI-Driven Innovations in Image Processing and Acoustic Signal Detection. JOURNAL OF RECENT TRENDS IN COMPUTER SCIENCE AND ENGINEERING (JRTCSE), 8(1), 25-45.

Gollangi, H. K., Bauskar, S. R., Madhavaram, C. R., Galla, E. P., Sunkara, J. R., & Reddy, M. S. (2020). Exploring AI Algorithms for Cancer Classification and Prediction Using Electronic Health Records. Journal of Artificial Intelligence and Big Data, 1(1), 65-74.

Mahida, A., Mandala, V., Bauskar, S. R., Konkimalla, S., & Reddy, M. S. (2024). Real-Time Fraud Mitigation in Digital Payments: Big Data and AI-Driven Biometric Authentication. Nanotechnology Perceptions, 1176-183.

Sunkara, J. R., Bauskar, S. R., Madhavaram, C. R., Galla, E. P., & Gollangi, H. K. (2023). An Evaluation of Medical Image Analysis Using Image Segmentation and Deep Learning Techniques. Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-407. DOI: doi. org/10.47363/JAICC/2023 (2), 388, 2-8.

Reddy, M. S., & Kumar, K. (2024). Exploring the Transformative Impact of Fintech on Banking, Finance and Insurance Industries. Interantional J. Sci. Res. Eng. Manag, 8(04), 1-5.

Mukkamala, S. S. K., Mahida, A., & Vishwanadham Mandala, M. S. (2024). Leveraging AI And Big Data For Enhanced Security In Biometric Authentication: A Comprehensive Model For Digital Payments. Migration Letters, 21(8), 574-590.

Galla, E. P., Gollangi, H. K., Boddapati, V. N., Sarisa, M., Polimetla, K., Rajaram, S. K., & Reddy, M. S. (2023). Prediction of Financial Stock Market Based on Machine Learning Technique. Eswar Prasad G, Hemanth Kumar G, Venkata Nagesh B, Manikanth S, Kiran P, et al.(2023) Prediction of Financial Stock Market Based on Machine Learning Technique. J Contemp Edu Theo Artific Intel: JCETAI-102.

Galla, E. P., Gollangi, H. K., Boddapati, V. N., Sarisa, M., Polimetla, K., Rajaram, S. K., & Reddy, M. S. (2023). Enhancing Performance of Financial Fraud Detection Through Machine Learning Model. Eswar Prasad G, Hemanth Kumar G, Venkata Nagesh B, Manikanth S, Kiran P, et al.(2023) Enhancing Performance of Financial Fraud Detection Through Machine Learning Model. J Contemp Edu Theo Artific Intel: JCETAI-101.

Bauskar, S., Boddapati, V. N., Sarisa, M., Reddy, M., Sunkara, J. R., Rajaram, S. K., & Polimetla, K. (2022). Data Migration in the Cloud Database: A Review of Vendor Solutions and Challenges. Available at SSRN 4988789.

Madhavaram, C. R., Galla, E. P., Reddy, M. S., Sarisa, M., & Nagesh, V. (2021). Predicting Diabetes Mellitus in Healthcare: A Comparative Analysis of Machine Learning Algorithms on Big Dataset. Journal homepage: https://gjrpublication. com/gjrecs, 1(01).

Galla, P., Sunkara, R., & Reddy, S. (2020). ECHOES IN PIXELS: THE INTERSECTION OF IMAGE PROCESSING AND SOUND DETECTION THROUGH THE LENS OF AI AND ML.

Bauskar, S. R., Reddy, M. S., Sarisa, M., & KONKIMALLA, S. The Future of Cloud Computing_ Al-Driven Deep Learning and Neural Network Innovations. BUDHA PUBLISHER.

Konkimalla, S., SARISA, M., REDDY, M. S., & BAUSKAR, S. DATA ENGINEERING IN THE AGE OF AI GENERATIVE MODELS AND DEEP LEARNING UNLEASHED. BUDHA PUBLISHER.

Adusumilli, S., Damancharla, H., & Metta, A. (2020). Artificial Intelligence-Driven Predictive Analytics for Educational Behavior Assessment. Transactions on Latest Trends in Artificial Intelligence, 1(1). Retrieved from https://www.ijsdcs.com/index.php/TLAI/article/view/638

Adusumilli, S., Damancharla, H., & Metta, A. (2020). Machine Learning Algorithms for Fraud Detection in Financial Transactions. International Journal of Sustainable Development in Computing Science, 2(1). Retrieved from https://www.ijsdcs.com/index.php/ijsdcs/article/view/639

Adusumilli, S., Damancharla, H., & Metta, A. (2020). Leveraging AI for Real-Time Sentiment Analysis in Social Media Networks. (2020). International Numeric Journal of Machine Learning and Robots, 4(4). https://injmr.com/index.php/fewfewf/article/view/182

AI-Powered Cybersecurity Solutions for Threat Detection and Prevention (S. B. K. Adusumilli, H. Damancharla, & A. R. Metta , Trans.). (2021). International Journal of Creative Research In Computer Technology and Design, 3(3). https://jrctd.in/index.php/IJRCTD/article/view/74

Adusumilli, S., Damancharla, H., & Metta, A. (2021). Deep Learning Techniques for Image Recognition in Autonomous Vehicles. (2021). International Meridian Journal, 3(3). https://meridianjournal.in/index.php/IMJ/article/view/94

Adusumilli, S., Damancharla, H., & Metta, A. (2021). Integrating Machine Learning and Blockchain for Decentralized Identity Management Systems. (2021). International Journal of Machine Learning and Artificial Intelligence, 2(2). https://jmlai.in/index.php/ijmlai/article/view/46

Adusumilli, S., Damancharla, H., & Metta, A. (2022). Blockchain-Based Secure Framework for IoT Data Management. International Journal of Sustainable Development in Computing Science, 4(1). Retrieved from https://www.ijsdcs.com/index.php/ijsdcs/article/view/640

Adusumilli, S., Damancharla, H., & Metta, A. (2022). Optimizing Supply Chain Efficiency Through Blockchain and Smart Contracts. (2022). International Numeric Journal of Machine Learning and Robots, 6(6). https://injmr.com/index.php/fewfewf/article/view/183

Adusumilli, S., Damancharla, H., & Metta, A. (2023). Enhancing Data Privacy in Healthcare Systems Using Blockchain Technology. Transactions on Latest Trends in Artificial Intelligence, 4(4). Retrieved from https://www.ijsdcs.com/index.php/TLAI/article/view/637

Dhaiya, S., Pandey, B. K., Adusumilli, S. B. K., & Avacharmal, R. (2021). Optimizing API Security in FinTech Through Genetic Algorithm based Machine Learning Model.

Manoharan, G., Mishra, A. B., Adusumilli, S. B. K., Chavva, M., Damancharla, H., & Lenin, D. S. (2024, May). Supervised Learning for Personalized Marketing Strategies. In 2024 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI) (pp. 1-6). IEEE.

Adusumilli, S. B. K. (2024). SCALABLE SOFTWARE ARCHITECTURE FOR DYNAMIC THREAT DETECTION AND MITIGATION IN IOT. Machine Intelligence Research, 18(1), 468-481.

Adusumilli, S. B. K. (2023). TOWARDS ENERGY-EFFICIENT AIML INFERENCE ON EDGE DEVICES SOFTWARE SOLUTIONS AND CHALLENGES. Journal of Engineering Sciences, 14(11).

Adusumilli, S. B. K. Mitigating Cybersecurity Risks in Embedded Systems A Software-First Approach.

Sarkar, R., Malini, T. N., Adusumilli, S. B. K., Jena, M. S., & Patra, J. P. AI-INFUSED BLOCKCHAIN INNOVATIONS IN MANUFACTURING SUPPLY CHAINS FOR ECO-FRIENDLY PRACTICES TOWARDS A SUSTAINABLE FUTURE.

Most read articles by the same author(s)

<< < 1 2 3 4 5 6 > >>