Animating Static Pictures: A Cartoon Transformation Approach with OpenCV and Python
Main Article Content
Abstract
Image processing is a versatile methodology employed for enhancing images, extracting valuable information, and creating new representations. This process involves a range of tools, including OpenCV, Scikit Image, and NumPy, which play pivotal roles in performing various transformations on images. A significant aspect of our approach employs Generative Adversarial Networks (GANs) to learn and animate these images. Our primary objective is to enhance the versatility and controllability of our framework. Generative modeling, a fundamental aspect of this research, falls under the domain of unsupervised machine learning, wherein the model autonomously identifies regularities and patterns in the input data. This knowledge is then leveraged to generate new, credible examples, drawing from the original dataset. OpenCV, an open-source Python library, primarily caters to real-time computer vision and image processing, offering diverse techniques for image manipulation. In addition, NumPy, a Python library for scientific computing, facilitates efficient manipulation of arrays. These arrays contain data of consistent types, which can be determined using the 'dtype' attribute. Various algorithms are applied in image processing, such as morphological, mathematical, and Fourier transform techniques, as well as edge detection, ripple-based processing, and convolutional neural networks.
Downloads
Article Details
How to Cite
References
R.S Khalaf and A. Varol, ”Digital Forensics: Focusing on Image Forensics,” 2019 7th International Symposium on Digital Forensics and Security (ISDFS), 2019, pp. 1-5, doi: 10.1109/ISDFS.2019.8757557
G Maria Jones; S Godfrey Winster, ”An Insight into Digital Forensics: History, Frameworks, Types and Tools,” in Cyber Security and Digital Forensics: Challenges and Future Trends, Wiley, 2022, pp.105-125, doi: 10.1002/9781119795667.ch6
H. Majed, H. N. Noura, and A. Chehab, "Overview of Digital Forensics and Anti-Forensics Techniques," 2020 8th International Symposium on Digital Forensics and Security (IS-DFS), 2020, pp. 1-5, doi: 10.1109/ISDFS49300.2020.9116399
O. M. Adedayo, ”Big data and digital forensics,” 2016 IEEE International Conference on Cybercrime and Computer Forensic (ICCCF), 2016, pp. 1-7, doi: 10.1109/IC-CCF.2016.7740422
Refaces. (2022, January 18). What is Digital Forensics: Process, tools, and types: Computer Forensicsoverview. RecFaces. Retrieved from https://recfaces.com/articles/digital-forensics
K. U. Maheshwari and G. Shobana, "The State of the art tools and techniques for remote digital forensic investigations," 2021 3rd International Conference on Signal Processing and Communication (ICPSC), 2021, pp. 464-468, doi: 10.1109/ICSPC51351.2021.9451718.
L. Chen, L. Xu, X. Yuan and N. Shashidhar, "Digital forensics in social networks and the cloud: Process, approaches, methods, tools, and challenges," 2015 International Conference on Computing, Networking and Communications (ICNC), 2015, pp. 1132-1136, doi: 10.1109/ICCNC.2015.7069509.
K. S. Singh, A. Irfan and N. Dayal, "Cyber Forensics and Comparative Analysis of Digital Forensic Investigation Frameworks," 2019 4th International Conference on Information Systems and Computer Networks (ISCON), 2019, pp. 584-590, doi: 10.1109/ISCON47742.2019.9036214.
K. Ghazinour, D. M. Vakharia, K. C. Kannaji and R. Satyakumar, "A study on digital forensic tools," 2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI), 2017, pp. 3136-3142, doi: 10.1109/ICPCSI.2017.8392304.
A. Al-Sabaawi, "Digital Forensics for Infected Computer Disk and Memory: Acquire, Analyse, and Report," 2020 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE), 2020, pp. 1-7, doi: 10.1109/CSDE50874.2020.9411614.
Chaitanya Krishna Suryadevara, “TOWARDS PERSONALIZED HEALTHCARE - AN INTELLIGENT MEDICATION RECOMMENDATION SYSTEM”, IEJRD - International Multidisciplinary Journal, vol. 5, no. 9, p. 16, Dec. 2020.
Kunduru, A. R. (2023). DATA CONVERSION STRATEGIES FOR ERP IMPLEMENTATION PROJECTS. CENTRAL ASIAN JOURNAL OF MATHEMATICAL THEORY AND COMPUTER SCIENCES, 4(9), 1-6. Retrieved from https://cajmtcs.centralasianstudies.org/index.php/CAJMTCS/article/view/509
Arjun Reddy Kunduru. (2023). Healthcare ERP Project Success: It’s all About Avoiding Missteps. Central Asian Journal of Theoretical and Applied Science, 4(8), 130-134. Retrieved from https://cajotas.centralasianstudies.org/index.php/CAJOTAS/article/view/1268
Kunduru, A. R. (2023). THE PERILS AND DEFENSES OF ENTERPRISE CLOUDCOMPUTING: A COMPREHENSIVE REVIEW. Central Asian Journal of Mathematical Theory and Computer Sciences, 4(9), 29-41.
Kunduru, A. R. (2023). Maximizing Business Value with Integrated IoT and Cloud ERP Systems. International Journal of Innovative Analyses and Emerging Technology, 3(9), 1-8.
Kunduru, A. R. (2023). Blockchain Technology for ERP Systems: A Review. American Journal of Engineering, Mechanics and Architecture, 1(7), 56-63.
Suryadevara, Chaitanya Krishna, Predictive Modeling for Student Performance: Harnessing Machine Learning to Forecast Academic Marks (December 22, 2018). International Journal of Research in Engineering and Applied Sciences (IJREAS), Vol. 8 Issue 12, December-2018, Available at SSRN: https://ssrn.com/abstract=4591990
Suryadevara, Chaitanya Krishna, Unveiling Urban Mobility Patterns: A Comprehensive Analysis of Uber (December 21, 2019). International Journal of Engineering, Science and Mathematics, Vol. 8 Issue 12, December 2019, Available at SSRN: https://ssrn.com/abstract=4591998
Chaitanya Krishna Suryadevara. (2019). A NEW WAY OF PREDICTING THE LOAN APPROVAL PROCESS USING ML TECHNIQUES. International Journal of Innovations in Engineering Research and Technology, 6(12), 38–48. Retrieved from https://repo.ijiert.org/index.php/ijiert/article/view/3654
Chaitanya Krishna Suryadevara. (2020). GENERATING FREE IMAGES WITH OPENAI’S GENERATIVE MODELS. International Journal of Innovations in Engineering Research and Technology, 7(3), 49–56. Retrieved from https://repo.ijiert.org/index.php/ijiert/article/view/3653
Chaitanya Krishna Suryadevara. (2020). REAL-TIME FACE MASK DETECTION WITH COMPUTER VISION AND DEEP LEARNING: English. International Journal of Innovations in Engineering Research and Technology, 7(12), 254–259. Retrieved from https://repo.ijiert.org/index.php/ijiert/article/view/3184
Chaitanya Krishna Suryadevara. (2021). ENHANCING SAFETY: FACE MASK DETECTION USING COMPUTER VISION AND DEEP LEARNING. International Journal of Innovations in Engineering Research and Technology, 8(08), 224–229. Retrieved from https://repo.ijiert.org/index.php/ijiert/article/view/3672
Kunduru, A. R. (2023). Security concerns and solutions for enterprise cloud computing applications. Asian Journal of Research in Computer Science, 15(4), 24–33. https://doi.org/10.9734/ajrcos/2023/v15i4327
Kunduru, A. R. (2023). Industry best practices on implementing oracle cloud ERP security. International Journal of Computer Trends and Technology, 71(6), 1-8. https://doi.org/10.14445/22312803/IJCTT-V71I6P101
Kunduru, A. R. (2023). Cloud Appian BPM (Business Process Management) Usage In health care Industry. IJARCCE International Journal of Advanced Research in Computer and Communication Engineering, 12(6), 339-343. https://doi.org/10.17148/IJARCCE.2023.12658
Kunduru, A. R. (2023). Effective usage of artificial intelligence in enterprise resource planning applications. International Journal of Computer Trends and Technology, 71(4), 73-80. https://doi.org/10.14445/22312803/IJCTT-V71I4P109
Kunduru, A. R. (2023). Recommendations to advance the cloud data analytics and chatbots by using machine learning technology. International Journal of Engineering and Scientific Research, 11(3), 8-20.
Kunduru, A. R., & Kandepu, R. (2023). Data archival methodology in enterprise resource planning applications (Oracle ERP, Peoplesoft). Journal of Advances in Mathematics and Computer Science, 38(9), 115–127. https://doi.org/10.9734/jamcs/2023/v38i91809
Chaitanya Krishna Suryadevara, “DIABETES RISK ASSESSMENT USING MACHINE LEARNING: A COMPARATIVE STUDY OF CLASSIFICATION ALGORITHMS”, IEJRD - International Multidisciplinary Journal, vol. 8, no. 4, p. 10, Aug. 2023.
Chaitanya Krishna Suryadevara. (2023). REVOLUTIONIZING DIETARY MONITORING: A COMPREHENSIVE ANALYSIS OF THE INNOVATIVE MOBILE APP FOR TRACKING DIETARY COMPOSITION. International Journal of Innovations in Engineering Research and Technology, 10(8), 44–50. Retrieved from https://repo.ijiert.org/index.php/ijiert/article/view/3673
Chaitanya krishna Suryadevara. (2023). NOVEL DEVICE TO DETECT FOOD CALORIES USING MACHINE LEARNING. Open Access Repository, 10(9), 52–61. Retrieved from https://oarepo.org/index.php/oa/article/view/3546
Kunduru, A. R. (2023). Artificial intelligence usage in cloud application performance improvement. Central Asian Journal of Mathematical Theory and Computer Sciences, 4(8), 42-47. https://cajmtcs.centralasianstudies.org/index.php/CAJMTCS/article/view/491
Kunduru, A. R. (2023). Artificial intelligence advantages in cloud Fintech application security. Central Asian Journal of Mathematical Theory and Computer Sciences, 4(8), 48-53. https://cajmtcs.centralasianstudies.org/index.php/CAJMTCS/article/view/492
Kunduru, A. R. (2023). Cloud BPM Application (Appian) Robotic Process Automation Capabilities. Asian Journal of Research in Computer Science, 16(3), 267–280. https://doi.org/10.9734/ajrcos/2023/v16i3361
Kunduru, A. R. (2023). Machine Learning in Drug Discovery: A Comprehensive Analysis of Applications, Challenges, and Future Directions. International Journal on Orange Technologies, 5(8), 29-37.
Arjun Reddy Kunduru. (2023). From Data Entry to Intelligence: Artificial Intelligence’s Impact on Financial System Workflows. International Journal on Orange Technologies, 5(8), 38-45. Retrieved from https://journals.researchparks.org/index.php/IJOT/article/view/4727
Arjun Reddy Kunduru. (2023). The Inevitability of Cloud-Based Case Management for Regulated Enterprises. International Journal of Discoveries and Innovations in Applied Sciences, 3(8), 13–18. Retrieved from https://openaccessjournals.eu/index.php/ijdias/article/view/2247
krishna Suryadevara, C. (2023). NOVEL DEVICE TO DETECT FOOD CALORIES USING MACHINE LEARNING. Open Access Repository, 10(9), 52-61.
Atluri, H., & Thummisetti, B. S. P. (2022). A Holistic Examination of Patient Outcomes, Healthcare Accessibility, and Technological Integration in Remote Healthcare Delivery. Transactions on Latest Trends in Health Sector, 14(14).
Atluri, H., & Thummisetti, B. S. P. (2023). Optimizing Revenue Cycle Management in Healthcare: A Comprehensive Analysis of the Charge Navigator System. International Numeric Journal of Machine Learning and Robots, 7(7), 1-13.
Kasula, B. Y. (2023). Machine Learning Applications in Diabetic Healthcare: A Comprehensive Analysis and Predictive Modeling. International Numeric Journal of Machine Learning and Robots, 7(7).
Kasula, B. Y. (2023). The Role of Blockchain Technology in Securing Electronic Health Records. Transactions on Latest Trends in Artificial Intelligence, 4(4).
Pansara, R. (2023). MDM Governance Framework in the Agtech & Manufacturing Industry. International Journal of Sustainable Development in Computing Science, 5(4), 1-10.
Kasula, B. Y. (2023). Leveraging Natural Language Processing and Machine Learning for Enhanced Content Rating. International Meridian Journal, 5(5).
Kasula, B. Y. (2023). Exploring the Impact of Telemedicine on Patient Engagement and Healthcare Accessibility. International Transactions in Machine Learning, 5(5), 1-7.